Subject Code	Subject Name (Lab oriented Theory Courses)		L	T	P	C
AI19644	IOT ARCHITECTURE AND ITS PROTOCOLS	PC	3	0	2	4

Ob	Objectives:						
•	To learn basics of Embedded Systems Architecture.						
•	To understand ISA Architecture Models and memory interfaces.						
•	To interpret Smart Objects and IoT Architectures.						
•	To familiarize about various IOT-related protocols.						
•	To build simple IoT Systems using Arduino and Raspberry Pi.						

UNIT-I	IOT FUNDAMENTALS	9								
	Things - Physical Design- Logical Design- IoT Enabling Technologies - IoT Levels & Deplo Domain Specific IoTs. (Chapter 1 of T1)	yment								
UNIT-II	IOT REFERENCE ARCHITECTURE, SOFTWARE DESIGN	9								
	Control Units – Communication modules – Bluetooth – Zigbee – Wifi – GPS- IOT Protocols (IPv6, 6LoWPAN, RPL, CoAP etc), MQTT, Wired Communication, Power Sources. (Chapter 7 of R1)									
UNIT-III	RESOURCE MANAGEMENT IN IOT	9								
Clustering	- Clustering for Scalability - Clustering for routing - Clustering Protocols for IOT - The Future V	Veb of								
	t up cloud environment – Cloud access from sensors– Data Analytics for IOT. (Chapter 3 of R2)									
UNIT-IV	IOT ACCESS TECHNOLOGIES	9								
IoT Access	Technologies: Physical and MAC layers - topology and Security of IEEE 802.15.4 - 802.1	5.4g -								
802.15.4e,	Network Layer: Need for Optimization - Constrained Nodes - Constrained Networks - IP ve	rsions								
Optimizing	IP for IoT: From 6LoWPAN to 6Lo - Routing over Low Power and Lossy Networks. Case studies	es: An								
IoT Blueprin	nt for Public Safety. (Chapter 1, 12 of T2 and Chapter 4, 5 and 15 of R3)									
UNIT-V	DESIGN AND DEVELOPMENT OF IOT APPLICATION	9								
Design Met	Design Methodology - Embedded computing logic - Microcontroller - System on Chips - Basic building blocks of IoT									
- Arduino B	- Arduino Board details - IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Python Programming									
case studies: illustrating to design home automation. (Chapter 7and 9 of T2)										
	Contact Hours :	45								

List of Experiments										
1.	Familiarization with Arduino/Raspberry Pi and perform necessary software installation.									
2.	To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.									
3.	To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings. To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.									
4.	To interface Bluetooth/Wifi with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth/Wifi.									
5.	Mini Projects(any one for each group) i. Home Automation system with mobile Integration. ii. Weather Monitoring system using Raspberry Pi/Arduino iii. Automatic plant watering/irrigation system using Raspberry Pi/Arduino. iv. Vehicle Tracking System using Raspberry Pi/Arduino. v. Intrusion detection System using Raspberry Pi/Arduino. vi. Smart Parking System using Raspberry Pi/Arduino									
		Contact Hours	:	30						
Total Contact Hours : 60										

_								
Co	Course Outcomes:							
On	On completion of the course, the students will be able to							
•	Comprehend the architecture of Embedded systems.							
•	Design and develop programs for specific embedded applications.							
•	Apply the basic concepts of IoT.							
•	■ Integrate various IoT Access Technologies.							
	Design and develop an IOT based real time application.							

Te	Text Books:								
1	ArshdeepBahga, Vijay Madisetti, "Internet of Things – A Hands-on Approach", Universities Press, India PVT Limited 2014.								
2	David Hanes, Gonzalo Salgueiro, Rob Barton "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", Cisco Press June 2017.								

Ref	Reference Books:							
1	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key Applications and Protocols", Wiley, 2012 .(CH-4)							
2	Vermesan, Ovidiu, and Peter Friess, eds. Internet of things-from research and innovation to market deployment, 1st edition, Aalborg: River publishers, 2014.							
3	David Hanes, Gonzalo Salgueiro, Rob Barton "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", Cisco Press June 2017.							

Web link:

- 1.https://www.arduino.cc/
- 2.https://www.educba.com/applications-of-iot
- **3.**https://www.edureka.co/blog/iot-applications

<u>CO - PO – PSO matrices of course</u>

PO/PSO	РО	PO	РО	РО	PO	РО	РО	PO	PO	РО	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
AI19644.1	1	2	3	3	1	-	2	1	-	-	2	_	1	2	2
AI19644.2	1	1	3	3	3	2	-		2	1	2	2	2	2	1
AI19644.3	2	2	2	-	1		2					3	2	2	2
AI19644.4	2	1	1	2	3	2		1	2	1	2	2	2	2	3
AI19644.5	2	3	2	2	3	2	1		2	1	2	3	2	2	1
Average	1.8	1.8	2	2.3	2.5	2	1.5	1	2	1	2	2.5	2	2	1.8

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

No correlation: "-"